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Abstract. Comprehensive monitoring of NO2 exceedances is imperative for protecting human health, especially in trafficked

urban areas. However, accurate spatial characterization of exceedances is challenging due to the typically low density of air

quality monitoring stations and the inherent uncertainties of urban air quality models. We study how observational data from

different sources and time scales can be combined with a dispersion air quality model to obtain bias-corrected NO2 hourly

maps at the street scale. We present a kriging-based data-fusion workflow that merges a dispersion model output with contin-5

uous hourly observations, and uses a machine-learning-based Land Use Regression (LUR) model constrained with past short

intensive passive dosimeter campaigns observations. While the hourly observations allow to bias-adjust the temporal variabil-

ity of the dispersion model, the microscale-LUR model adds information on the NO2 spatial patterns. Our method includes

uncertainty calculation based on the estimated error variance of the Universal Kriging technique, which is subsequently used

to produce urban maps of probability of exceeding the 200 µg/m3 hourly and the 40 µg/m3 NO2 annual average limits. We10

assess the statistical performance of this approach in the city of Barcelona for the year 2019. Our results show that simply

merging the monitoring stations with the model output already significantly increases the correlation coefficient (r) by +29%

and decreases the Root Mean Square Error (RMSE) by -32%. When adding the time-invariant LUR model in the data-fusion

workflow, the improvement is even more remarkable: +46% and -48% for the r and RMSE, respectively. Our work highlights

the usefulness of high-resolution spatial information in data-fusion methods to estimate exceedances at the street scale better.15

1 Introduction

Air pollution is the leading environmental risk factor globally (WHO, 2021). Mortality, the decrease in life quality, and the

detrimental economic effects associated with air pollution are pressing decision-makers to take action, especially in urban

areas, where more than 50% of the global population lives and air quality standards are frequently exceeded. In the city of

Barcelona (Spain), the high vehicle density (about 5800 vehicles km−2 (Rivas et al., 2014)) induces a chronic NO2 problem,20

which makes Barcelona the sixth European city with the highest mortality associated with NO2 exposure (ISGlobal, 2021;
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Khomenko et al., 2021). In this context, obtaining high-resolution exposure to NO2 is crucial for decision-making in urban air

quality management.

During the last decades, several approaches have been developed to estimate NO2 exposure at different spatio-temporal

scales (Denby, 2011). A common one is the Land Use Regression (LUR) model, which relates explanatory variables of different25

nature (land use cover, population density, traffic, climate, and others) with air quality observations using regression models

(Briggs et al., 1997; Hoek et al., 2008; Beelen et al., 2013). LUR models are generally skillful, relatively easy to implement,

and not very demanding regarding computational resources. However, urban areas often present strong NO2 spatial gradients

that the official monitoring network cannot correctly characterize due to its low spatial representativeness (Vardoulakis et al.,

2005; Santiago et al., 2013; Duyzer et al., 2015a). To overcome this limitation and produce accurate surface NO2 maps, urban30

or microscale-LUR models rely on Low-Cost Sensors (LCS), typically restricting the temporal coverage to a few weeks.

Works dealing with microscale-LUR models have used different types of LCS, including passive dosimeters, which report

period-averaged concentrations (Perelló et al., 2021a; Su et al., 2009), time-dependent LCS (Munir et al., 2020; Weissert et al.,

2019), or mobile LCS campaigns (Wang et al., 2021). Due to the lack of experimental campaigns monitoring at high spatial

and temporal (hourly) resolutions consistently over a whole year, current microscale-LUR studies typically cannot target the35

hourly averaged NO2 maximum level (200 µg/m3) regulated by the 2008 European Ambient Air Quality Directive (AAQD)

(2008/EC/50).

Physics-based urban air quality models can generate hourly pollutant concentration estimates, overcoming the temporal

limitation of microscale-LUR models. Currently, these systems usually consist of the coupling between a regional chemical

transport model, which accounts for the long-range transport of pollutants, and an urban scale dispersion model. The last one40

can be based on semi-empirical relations such as Gaussian dispersion models and mass exchange global parameterizations

(e.g. Soulhac et al. (2017); Kim et al. (2018); Benavides et al. (2019); Denby et al. (2020); Hood et al. (2021), or an obstacle

resolving dispersion model using Computational Fluid Dynamics (Kwak et al., 2015; Auvinen et al., 2017). Despite the recent

efforts to improve urban dispersion modeling systems, they are afflicted by persistent uncertainties and biases, notably due

to the difficulty of prescribing accurate boundary conditions and emissions at the street scale, and reproducing the turbulent45

phenomena within the urban canopy.

In order to reduce model uncertainties, data-fusion methods can be employed to post-process model outputs and obtain more

reliable NO2 exposure maps. Several works have used monitoring station data to build data-fusion methods, either relying

solely on urban dispersion models to explain the spatial distribution (Tilloy et al., 2013) or adding different spatial information

(e.g. traffic intensity, satellite data, or land use cover) as proxies in addition to the model output (Horálek et al., 2006; Chen50

et al., 2019; Zhang et al., 2021; Dimakopoulou et al., 2022). In urban areas, the usual low density of monitoring stations has

motivated the development of data-fusion methods that integrate LCS campaigns to better explain the spatial distribution of

NO2 at the street-scale. For instance, the works of Schneider et al. (2017) and Mijling (2020) combine time-resolved LCS

hourly data with an urban model output to improve the NO2 characterization at a high-spatial resolution. Schneider et al.

(2017) use a popular geostatistic technique, Universal Kriging, considering the time-aggregated annual mean of an urban55

model as a basemap (or climatology) to explain the long-term spatial gradients at the street-scale, while the time-dependent
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LCS network explains the temporal behavior. However, the temporal coverage of their results is restricted to a few weeks in

which measurements are available. Thus, compromising their use to systematically estimate hourly NO2 exposure levels for

extended periods, in the order of years.

By combining model and observational data, advanced data-fusion methods can provide typically unbiased estimates of60

pollutant concentrations at the street scale. However, another piece of information of crucial importance is the uncertainty of

the estimated concentrations, as it can help decision-making or support the design of environmental epidemiological studies

(Gryparis et al., 2009). The Universal Kriging methodology provides the error variance of its predictions, which has already

been used as a measure of the uncertainty on data-fusion results of NO2 at the street scale (Schneider et al., 2017). However,

the validity of the confidence intervals and the normality of error distribution in this application remains to be investigated.65

Our study presents a data-fusion methodology considering a microscale-LUR model, in addition to the hourly monitoring

data, to bias-correct hourly NO2 estimates of an urban dispersion model at high spatial resolution (20m × 20m). Similarly to

Schneider et al. (2017), our work also relies on the basemap concept. However, contrary to previous studies, we have derived

it using a microscale-LUR model based on 840 samplers from recent passive dosimeters campaigns (Perelló et al., 2021a;

Benavides et al., 2019). Thus, the basemap accounts for the spatial patterns, whereas the temporal behavior is characterized70

by the hourly urban model output and hourly monitoring data. This approach can be very convenient for applying data-fusion

methods in cities where period-averaged LCS campaigns are available but lack time-dependent LCS data throughout the year,

which is usually the case. To assess the benefits of considering such microscale-LUR basemap, we compare two different

data-fusion methods: (i) Universal Kriging combining hourly observations with the hourly outputs of a street-scale Gaussian

dispersion model, namely UK-DM, and (ii) Universal Kriging combining the above items and the microscale-LUR model,75

namely UK-DM-LUR. The data-fusion methods are applied in Barcelona city (Spain) for the entire year 2019. An original

aspect of the present study is the empirical validation of the UK-based uncertainties and their translation into street-scale

probabilities of exceedance of the hourly and annual regulatory thresholds.

The paper is structured as follows: the observational data is described in Sect. 2.1. The Gaussian dispersion air quality

model CALIOPE-Urban used to produce hourly high-resolution fields of surface NO2 concentrations is described in Sect. 2.2,80

while the microscale-LUR method is explained in Sect. 2.3. A detailed description of the data-fusion methods is given in Sect.

2.4. Results of the microscale-LUR model are presented in Sect. 3.1, and Sect. 3.2 discusses the results of the data-fusion

methodologies. Finally, conclusions and final remarks are provided in Sect. 4.

2 Data and methodology

We compare two data-fusion methods (UK-DM and UK-DM-LUR) illustrated in Fig. 1. Below we describe each process and85

dataset used to derive them.
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Figure 1. Workflow of the two studied data-fusion methodologies. Hourly data from monitoring stations are combined with hourly dispersion

model results (UK-DM) and the time-invariant microscale-LUR basemap (UK-DM-LUR). PBL stands for Planetary Boundary Layer.

2.1 Study domain and observational NO2 data

Barcelona (Fig. 2) is the second most populated city in Spain and the tenth in Europe, with approximately 1.660.000 inhabitants

and 102 km2 (∼ 16.300 people per km2). It is located on the northeast coast of Spain, between the Mediterranean Sea and the

Collserola mountains. The city has a Mediterranean climate characterized by the dominance of sea breeze during the warm90

season, shallow boundary layer development, and recirculation of air pollutants (Jorba et al., 2004).

Hourly NO2 observational data for 2019 are obtained from the Catalan Atmospheric Pollution Surveillance Network (XVPCA)

measurement points in the Barcelona urban and surrounding areas.There are 12 stations available on the Barcelona agglomera-

tion (Fig. 2), with a percentage of availability of hourly data greater than 93%. Gràcia and Eixample are urban traffic monitoring

stations, Segnier and Jardins are sub-urban background stations, and the remaining 8 correspond to urban background stations.95

Two different NO2 passive dosimeter experimental campaigns (Fig. 3) are considered to derive the microscale-LUR model:

the xAire citizen science campaign (Perelló et al., 2021a, b) composed of 725 samplers and deployed between February
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Figure 2. Domain of study and location of the referenced monitoring stations. The map has been generated using ggplot2 (Wickham (2016))

and ggmap (Kahle and Wickham (2013)) R packages (R Core Team (2013)), and data from OpenStreetMap. © OpenStreetMap contributors

2017. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

16th and March 15th, 2018, and the 2-week measurement campaign of the Institute of Environmental Assessment and Water

Research - Spanish National Research Council (IDAEA-CSIC), that deployed 175 NO2 samplers across Barcelona during

February and March 2017 (Benavides et al., 2019). Both campaigns used Palmes-type NO2 diffusion tubes (Palmes et al.100

(1976)) to sample the NO2 levels, which implies an estimated uncertainty of ± 25%, as reported in Kuklinska et al. (2015).

2.2 Street-scale air quality model: CALIOPE-Urban

Hourly high-resolution concentrations of surface NO2 at street-scale over the city of Barcelona are estimated using the

CALIOPE-Urban multi-scale air quality model (Benavides et al. (2019)). CALIOPE-Urban accounts for the dispersion of

traffic emissions at high spatial resolution using the R-LINE Gaussian dispersion model (Snyder et al. (2013); Venkatram et al.105

(2013)). As described in more detail in Benavides et al. (2019), R-LINE is adapted to street-canyons by taking into account

road-link traffic emissions (Guevara et al. (2020)), meteorological variables (e.g., wind speed and direction, Monin–Obukhov

length and planetary boundary layer height) and buildings morphology (e.g., building density and height, and street orienta-
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tion). The chemical balance between NOx and NO2 is computed based on the generic reaction set (Valencia et al. (2018))

assuming clear-sky conditions and uncoupling chemistry from transport phenomena; in other words, the aging of pollutants is110

solely a function of wind speed and the distance between source and receptors.

At the regional scale, CALIOPE-Urban relies on the regional air quality modeling system CALIOPE (Baldasano Recio et al.

(2011)) for predicting urban background NO2 concentration. The regional CALIOPE accounts for long-range transport of

pollutants using three nested domains at increasing resolutions: 12 km × 12 km for the European region, 4 km × 4 km for the

Iberian Peninsula, and 1 km × 1 km for the region of Catalonia (Baldasano Recio et al. (2011), Pay et al. (2014)). The urban115

background NO2 concentrations obtained with regional CALIOPE are combined with the R-LINE dispersion results using a

dedicated parameterization of the vertical mixing (Benavides et al. (2019)).

In this work, CALIOPE-Urban employs a non-uniform mesh refined at the edge of traffic roads and coarser in low-gradient

regions of NO2. This type of mesh accelerates the calculations and reduces memory demand. The refined grid zones have a

resolution of 25 m × 25 m, progressively degrading to 500 m × 500 m in the regions of low NO2 gradients. To facilitate120

their visualization, these NO2 concentrations are finally interpolated over a uniform mesh with a resolution of 20 m × 20 m.

CALIOPE-Urban has been evaluated and successfully used in the framework of several impact studies, including the works of

Benavides et al. (2021) and Rodriguez-Rey et al. (2022).

2.3 Microscale-LUR model using Gradient Boosting Machine (GBM)

A non-linear microscale-LUR model based on passive dosimeter campaigns is used to produce an observation-based clima-125

tological view of the NO2 concentrations at a high spatial resolution over Barcelona city. While the monitoring stations and

the urban dispersion model provide information on the pollutants’ temporal behavior, the microscale-LUR basemap (long-

term mean) remains constant in time. Its main goal is to provide reliable long-term spatial variability patterns of NO2 at high

resolution using observational data and other urban information.

The target variable of the microscale-LUR model is the time-averaged concentrations of the two different NO2 experimental130

campaigns described in Sect. 2.1 and represented in Fig. 3. We have discarded the xAire samplers related to playgrounds

and classrooms, so we are using the remaining 669. In order to combine the xAire and IDAEA-CSIC campaigns, we have

annualized both following the procedure described in Perelló et al. (2021b): for each station, an adjustment factor is computed

as the ratio between the observed 2017 annual mean and the average over the period of the experimental campaign. Then, the

average of this factor over all stations is used to scale all passive samplers to the 2017 annual mean. This scaling assumes that135

the ratio does not depend on location and can be applied to all samplers. Despite adding some noise to the experimental results,

it corrects the environmental conditions influence and allows combining both campaigns, producing a dataset of 844 samplers

on which the microscale-LUR model relies.

The potential predictors of the microscale-LUR model are shown in Table 1. The geometric variables are calculated from

the Institut Cartogràfic i Geològic de Catalunya (ICGC) and Plan Nacional de Ortografía Aérea (PNOA (2020)). Traffic-140

related predictors consist of traffic density (t) for different circular buffer sizes. Being a the radius of the buffer, ta is computed

following Eq. (1) expressed in [vehicles · m / s]:
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Figure 3. Sampler locations of the two different NO2 experimental campaigns used to train the microscale-LUR model. The left panel shows

the NO2 values and the locations of the combined campaigns. The top- and bottom-right panels show the CSIC and xAire campaign locations,

respectively. The colour scale refers to the 2017 annualized NO2 values, in µg/m3. The map has been generated using ggplot2 (Wickham

(2016)) and ggmap (Kahle and Wickham (2013)) R packages (R Core Team (2013)), and data from OpenStreetMap. © OpenStreetMap

contributors 2017. Distributed under the Open Data Commons Open Database License (ODbL) v1.0.

ta =
n∑

i=1

AADTi · la,i, (1)

where i represents the street segment, n is the number of street segments over the circular area of πa2, li is the length of the

street segment i within the buffer, and AADTs is the average daily traffic of the street segment s expressed in vehicles per145

second. The ta predictors associated with the smaller buffers (5, 10 and 15 m) have highly skewed distributions, given that

most values across the map are null. To avoid training the microscale-LUR with skewed predictors, we introduce here the traffic

scaled variable, s, which combines all buffers as follows:
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Type Num. Variable Resolution

Urban geometric

1 Average building density

Squared buffer of 250m × 250m
2 Average building height

3 Maximum building height

4 Standard deviation building height

Traffic-related
5-16 Simulated vehicular traffic densities

Circular buffers of 5, 10, 15, 25, 50, 100,
300, 500, 1000, 2000, 3000 and
4000 m of radius

17 Traffic scaled Linear combination of the buffers above

Output from the
regional modeling system
CALIOPE (lowest layer)

18 NO2

Uniform mesh of 1km × 1km19 Planetary boundary layer height

20 Wind speed

Output from the
CALIOPE-Urban model 21 NO2 Non uniform mesh (25m × 25m to 500m × 500m)

Table 1. The final microscale-LUR model contemplates the use of these 21 potential predictors.

s =
1
N

∑

a

ta
πa2

, (2)

where N is the number of buffers (12 in our case). Traffic data are extracted from the road-link traffic network of the HER-150

MESv3 bottom-up emission model (Guevara et al. (2020)). We also considered NO2, Planetary Boundary Layer height and

wind speed annual means from the regional air quality modeling system CALIOPE as potential predictors, together with the

NO2 annual mean from the air quality model CALIOPE-Urban.

A recursive feature elimination method has been applied to remove highly correlated or uninformative features. We have

used the simple backward selection algorithm implemented in the R package (Kuhn, 2008), which starts with the full-featured155

model and gradually removes the least important feature while monitoring the RMSE in Cross-Validation (CV). The goal is to

obtain the simplest model with the lowest RMSE to gain generalization and interpretability. The final microscale-LUR model

includes the following eight predictors: average building density; traffic buffers of 25, 100 m, and the traffic scaled variable; all

the annually averaged data from the regional CALIOPE modeling system; and the annual average NO2 from CALIOPE-Urban.

To account for non-linear relations among the predictors and the target variable, we used the Gradient Boosting Machine160

(GBM) algorithm implemented in the R package gbm (Ridgeway, 2004). GBM is a popular machine learning algorithm

(Natekin and Knoll, 2013) that has shown excellent results in terms of accuracy and generalization when compared to other

learning algorithms (Caruana and Niculescu-Mizil (2006)). The GBM hyper-parameters (shrinkage rate, interaction depth,

minimum observation per node, and bag fraction) are optimized based on the minimum mean cross-validated error and a grid

search algorithm. Additionally, following the work of Chen et al. (2019), we exploit the potential spatial correlation of the165
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GBM residuals by interpolating and adding them to the predicted values. The interpolation is done with an Ordinary Kriging

(OK) (Wackernagel, 2003).

One could think that skipping over the LUR computation by directly using all its time-invariant information (passive dosime-

ter campaigns, urban geometry, traffic-related data, and annual-averaged model results) as covariates in the Universal Kriging

would simplify the workflow. However, there are two main drawbacks to doing so. On the one hand, in contrast to the GBM,170

the Universal Kriging assumes linear relations between covariates and the observed NO2, which is not necessarily true for

this case. On the other hand, when considering a large number of covariates with only 12 monitoring stations, strong spurious

correlations lacking physical meaning are prone to happen, wrongly driving the final solution (Hengl et al. (2007)). Thus, gath-

ering all static information in the single LUR covariate offers more robust results while permitting the addition of predictors

using non-linear regression models.175

2.4 Universal Kriging as a data fusion methodology for spatial bias correction

Microscale-LUR model and the hourly CALIOPE-Urban outputs are combined with observational NO2 data from the mon-

itoring stations using the geostatistical technique Universal Kriging, which is commonly used for spatial interpolation. This

methodology predicts a random variable Z, in a target point x, based on a combination between a multi-linear regression anal-

ysis with external variables f, referred as covariates, and a pure spatial interpolation considering the auto-correlation structure180

of the regression residuals. In our case, the variable Z corresponds to the monitoring data while the covariates are CALIOPE-

Urban and our microscale-LUR model. A simple (multi)linear regression model is convenient here, given the low number (12)

of available monitoring stations within the computational domain. Universal Kriging assumes the following relation (Cressie,

1993):

Z(x) =
L∑

l=0

alfl(x) +R(x), (3)185

where L equals 1 in the UK-DM approach and 2 in the UK-DM-LUR; al are the non-zero coefficients from the multi-linear

regression between the observations and the covariates fl, with f0(x) = 1 by convention; and R(x) is the residual random field.

The deterministic part of the variable Z is explained by a linear combination of the covariates, while the residual random field

is considered to have zero mean and to be spatially auto-correlated. The main advantage of this method is that depending on the

strength of the correlation between covariates and observations, Universal Kriging gives more weight either to the multi-linear190

regression or to the spatial interpolation of the residuals (Hengl (2009)). Thus, providing a robust data-fusion method that

adapts to the quality of the model output.

As a Gaussian process, Universal Kriging estimates the variance of its predictions (σ2) coming from both, the multi-linear

regression (σ2
MLR), and the spatial interpolation (σ2

SI ) steps, as

9
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σ2(x) =
m∑

α=1

wα · γR(xα− x)

︸ ︷︷ ︸
σ2

SI

+
L∑

l=0

λlfl(x)

︸ ︷︷ ︸
σ2

MLR

, (4)195

where m is the number of monitoring stations; wα are the spatial interpolation weights associated with each measurement

point; λl are the L+1 Lagrange multipliers used to minimize the variance error; and γR(xα−x) stands for the variogram, which

characterizes the spatial structure of the residuals (Chiles and Delfiner (1999)). Thus, the variance of a prediction reflects how

far the unmeasured location is from the observation points, as well as from the feature space in which the regression model has

been calibrated, i.e., the extrapolation effect (Hengl (2009)). Our Universal Kriging implementation relies on the R package200

gstat (Pebesma (2004), Gräler et al. (2016)).

To normalize the distribution of the NO2 data and to ensure positive predicted values, we have applied the Universal Kriging

described above after transforming NO2 data into the log-space. However, results need to be back-transformed to the original

scale. Following the work of Cressie (1993), the back-transformed is performed as

Ẑ(x) = exp( Zl(x) +σ2
l (x)/2 ), (5)205

σ̂2(x) = (exp(σ2
l (x))− 1) · exp(2 ·Zl(x) +σ2

l (x)), (6)

where Ẑ(x) and σ̂2(x) respectively represent back-transformed prediction and variance at the target point, while Zl(x) and

σ2
l (x) are prediction and variance in log-space, respectively.

Assuming a normal distribution of the error, the probability of exceedance (P) a certain limit value (L) can be computed as210

P(x) = 1−F

(
L− Ẑ(x)

σ̂(x)

)
, (7)

where F is the normal cumulative distribution function.

2.4.1 Statistical metrics to evaluation data-fusion skills

Statistical performance is assessed by Leave-One-Out-Cross-Validation (LOOCV), which consists of performing the data-

fusion considering all monitoring stations except one kept to cross-validate the results. For each LOOCV we present the215

Coefficient of Efficiency (COE), the Root Mean Square Error (RMSE), the Mean Bias (MB), and the Correlation Coefficient

(r) defined as:

COE = 1−
∑k

i=1|Mi−Oi|∑k
i=1|Oi−O|

(8)
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MB =
1
k

k∑

i=1

Mi−Oi (9)

r =
1

k− 1

k∑

i=1

(
Mi−M

σM
)(

Oi−O

σO
) (10)220

RMSE =

√√√√1
k

k∑

i=1

(Mi−Oi)2 (11)

where k is the total number of observations; Oi and Mi are the observed and modelled i values, respectively; O and M are

their respective means; and σO and σM refer to their standard deviation.

2.4.2 Spatial auto-correlation structure of NO2 levels

In the Universal Kriging context, the variogram describes the spatial auto-correlation structure of the residual random field.225

In our case, the limited number of monitoring stations makes extracting a meaningful spatial structure challenging. For this

reason, we estimate the residual variogram based on the dosimeters campaigns. This decision, however, entails a substantial

limitation due to the assumption of a static variogram. We rely only on the IDAEA-CSIC campaign (discarding the xAire

campaign for the variogram derivation) to avoid extra assumptions on combining campaigns. Additionally, we considered an

isotropic variogram. All these assumptions impact the variance error estimated by the Universal Kriging (Brus and Heuvelink230

(2007)). To assess the impact of such assumptions, an analysis of the estimated variance in LOOCV is carried out in Sect. 3.2.

The variogram is fitted using the Matérn model with the Stein’s parametrization implemented in the automap package

(Hiemstra et al., 2008) setting the smoothing parameter κ = 0.2. The resulting variogram model is characterized by a 5·10−2

partial sill, 3·10−5 nugget and a range of 620 m. Following the work of Denby et al. (2007), we have optimized the range value

to minimize the RMSE of the Universal Kriging. The range estimates the distance at which the data are no longer correlated.235

To optimize it, we performed a CV at all monitoring stations varying the range from 1 to 10 km every 1 km, keeping all other

model parameters constant. We obtained the best results for the range of 5 km, improving the r by 4 %, the COE by 14 %, and

the RMSE by -9 % with respect to the Universal Kriging using the original range value of 620 m.

2.4.3 Statistical quality assurance of the (multi)linear regression

The correlation coefficient and the slope of the regression model between covariates (CALIOPE-Urban and the microscale-240

LUR model) and observations are checked before including covariates in the Universal Kriging workflow as indicated in Fig.

1. If a covariate shows a low correlation (p-value > 0.05) with the observations at a specific hour, it is not considered in the

regression model, as in the works of Zhang et al. (2021) and Oh et al. (2021). Additionally, if none of the covariates show a

significant correlation, we use all covariates to build the regression model. However, to avoid nonphysical hourly maps, the
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Figure 4. Scheme of the outer 10-fold CV and the inner 4-fold CV applied for the GBM training.

covariates are used only if their slope is positive, as suggested by Denby et al. (2007). In case all slopes are negative, or there are245

less than four observations available in a specific hour, the Universal Kriging is not performed and the results of the data-fusion

method are directly the raw dispersion-model output. Following the above criteria, the dispersion model is not corrected 14 %

and 2 % of the hours in 2019 for the UK-DM and UK-DM-LUR approaches, respectively.

3 Results and Discussion

Results are organized into two sections. Firstly, in Sect. 3.1, we estimate the microscale-LUR model performance and present250

the obtained NO2 basemap. Secondly, in Sect. 3.2, the data fusion methodologies are discussed in terms of statistical perfor-

mance, uncertainty quantification, and exceedance probability maps.

3.1 Microscale-LUR model

3.1.1 Performance assessment

The GBM-based microscale-LUR model is evaluated using two nested K-fold CV, the inner one for tuning the model (Training-255

validation set) and the outer one for testing the model on different parts of the dataset (Test set). Such a procedure aims at giving

a reliable estimate of the expected performance. We use an outer 10-fold CV and an inner 4-fold CV as illustrated in Fig. 4.

The tuning of the model is performed through a grid search over the following hyperparameters: shrinkage rate (with values

ranging from 0.001 to 0.05 every 0.001), the interaction depth (from 1 to 4 every 1), the minimum observation in a node (from

5 to 15 every 1), and the bag fraction (0.5 and 0.65).260

Results are given in Table 2, together with the performance reference of the annual mean NO2 concentration obtained directly

from CALIOPE-Urban. As explained in Sect. 2.3, we exploit the spatial auto-correlation of the LUR residuals to improve its

estimation. To do so, the LUR residuals at the training locations are interpolated at the test locations by applying an OK. Then,

they are added to the predictions to obtain the corrected results (Test set adding the residuals in Table 2).
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Model n COE MB (µg/m3) r RMSE (µg/m3)

Microscale-LUR

Training-validation set 7600 0.30 0.15 0.69 11.38

Test set without adding the residuals 840 0.24 0.22 0.62 12.17

Test set adding the residuals 840 0.27 -0.27 0.64 11.87

Raw CALIOPE-Urban Annual mean 840 0.13 -0.81 0.54 13.68

Table 2. Statistical results of the microscale-LUR model in nested CV. The 2017 annual mean concentration of NO2 of the raw dispersion

model (CALIOPE-Urban) is also shown. The parameter n stands for the number of data points used to compute the statistics.

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

100

120

0 20 40 60 80 100 120

CALIOPE−Urban  [µg/m3]

D
os

im
et

er
s 

 [µ
g/

m
3 ]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

● ●

●
●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

100

120

0 20 40 60 80 100 120

LUR without residuals  [µg/m3]

D
os

im
et

er
s 

 [µ
g/

m
3 ]

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●
●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

● ●

●
●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

80

100

120

0 20 40 60 80 100 120

LUR with residuals  [µg/m3]

D
os

im
et

er
s 

 [µ
g/

m
3 ]

Figure 5. The left panel shows the raw annual mean of CALIOPE-Urban NO2 concentrations versus the annualized passive dosimeters

campaigns. The right and center panels correspond to the microscale-LUR results with and without the interpolated residuals, respectively.

These figures use the test sets in which the performance of the microscale-LUR model has been assessed. The red dashed lines report passive

dosimeter uncertainty (±25%)and the identity line is represented in blue. The statistical results are shown in Table 2.

Table 2 shows that the LUR model significantly improves the CALIOPE-Urban results. Also, the addition of the residuals265

slightly increases the statistical performance. The Training-validation set results are not perfectly fitted and are only slightly

better than the Test set results, indicating that the LUR is not overfitted and has good capabilities to predict unseen data.

We show in Fig. 5 the scatter plots of the annual mean CALIOPE-Urban and the Test dataset results with and without adding

the residuals, along with the observational uncertainty ranges indicated by the dashed red lines (±25% according to Kuklinska

et al. (2015)). Although a large portion of the predicted values for the LUR model with the residual correction lies within the270

uncertainty range, difficulty in predicting values of NO2 higher than 80 µg/m3 can be observed. We attribute this behaviour

to the limited number of points in this range, which can weaken the model training, particularly in the nested CV context, but

also to the already poor predictive skills of CALIOPE-Urban in this concentration range.

Comparing these results with previous works, the resulting correlation coefficient (r) is lower than a LUR model fitted with

the xAire campaign data (r = 0.74 in LOOCV) reported in Perelló et al. (2021a). However, Perelló et al. (2021a) used only 370275

outdoor sampling sites out of the 669 available. They excluded samplers close to traffic and street intersections, achieving a
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skilled urban LUR model. Even if the correlation coefficient is slightly lowered, we have considered all outdoor sampling sites

(along with the IDAEA-CSIC campaign) to capture as much as possible the NO2 spatial trends. On the other hand, the work

of Munir et al. (2020) reported a microscale-LUR model based on 40 time-dependent LCS with slightly lower performance in

CV than the present one (r = 0.56). Moreover, Munir et al. (2020) also reported a r value of 0.53 when the non-linear LUR280

model is based on the combination of 188 period-averaged and 40 time-dependent LCS. A key aspect of the present data-fusion

methodology is that the microscale-LUR model results better explain the annualized passive dosimeters campaigns compared

to the reference CALIOPE-Urban annual mean. Therefore, they are subsequently considered as a covariate in the Universal

Kriging methodology, as further explained in the next Sect. 3.1.2.

3.1.2 Microscale-LUR basemap285

41.33°N

41.36°N

41.39°N

41.42°N

41.45°N

2.09°E 2.12°E 2.15°E 2.18°E 2.21°E

(a) Microscale-LUR basemap (with residuals)
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Figure 6. (a) Resulting microscale-LUR basemap using all available sampling sites and adding the interpolated residuals, and (b) 2019

annual mean concentration of NO2 of the raw dispersion model CALIOPE-Urban.

We proceed to train the microscale-LUR model with the residual correction using all available sampling sites. Figure 6 com-

pares the long-term NO2 patterns from the microscale-LUR basemap (Fig. 6a) with the NO2 2019 annual mean of CALIOPE-

Urban (Fig. 6b). Notice that the goal of the basemap is to correct the long-term spatial variability of NO2; thus, Figure 6

highlights the differences in spatial patterns rather than differences in absolute NO2 values. The resulting basemap shows a
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qualitatively consistent NO2 distribution: the major trafficked roads of the city and the port area are the most polluted locations,290

while the Collserola Mountains and the sea bordering the city have moderate NO2 levels. Although both figures show similar

NO2 patterns, local differences from experimental information can be observed in Fig. 6a. As further shown in the statistical

results, considering extensive passive dosimeters information through the microscale-LUR model avoids relying only on the

urban model to describe the NO2 gradients and significantly improves the data-fusion methodology.

The influence of each predictor in the final microscale-LUR model has been computed based on the methodology proposed295

by Friedman (2001) and implemented in the R package gbm (Ridgeway (2004)), in which the relative importance of each

variable is associated to the reduction of the GBM cost function. Given the chosen set of predictors, the most influential

variable is the NO2 CALIOPE-Urban annual mean with a relative importance of 25.1 %, followed by 17.7 % for the traffic

scaled variable and 15.7 % for the average building density. The other predictors exhibited a relative influence under the 15 %,

with the NO2 CALIOPE regional mean as the lowest one with 4.3 %.300

3.2 Data-fusion methodologies

3.2.1 Statistical evaluation

In order to quantify the added value of including the microscale-LUR basemap in the data-fusion methodology, two different

post-processes (see Fig.1) have been carried out. First, the output of the urban dispersion model CALIOPE-Urban is merged

with the monitoring data using Universal Kriging, named UK-DM. Second, the microscale-LUR basemap is added as a covari-305

ate in the Universal Kriging workflow, named UK-DM-LUR.

Hourly statistical results for the raw CALIOPE-Urban, UK-DM and UK-DM-LUR are shown in Fig. 7 for each monitoring

station using all available data of 2019. UK-DM and UK-DM-LUR results have been computed in LOOCV as explained in

Sect. 2.4. Gràcia and Eixample are the urban traffic monitoring stations, and the last row in Fig. 7 corresponds to the average

results over all stations. This figure shows that the hourly scale post-processes consistently improve all studied statistical310

metrics at all monitoring stations, regardless of the monitoring station type. Moreover, adding the LUR basemap as a covariate

(UK-DM-LUR) further improves the spatial correction at all stations and for all statistical metrics, except for the MB which

does not have a clear trend. A negative value of the COE reflects a poor predictive capacity, so we highlight that both data-

fusion methods achieve a positive COE at all considered stations. Almost all stations show a positive MB for CALIOPE-Urban

indicating a general overestimation of the model, while UK-DM and UK-DM-LUR present almost null MB averaged over315

all stations. The overestimation of CALIOPE-Urban in the monitoring stations may seem contradictory with the negative

bias presented in Table 2 for the passive dosimeters campaigns. However, this could indicate that the highest NO2 values in

Barcelona city are not routinely monitored, as already pointed out in the work of Duyzer et al. (2015b). Regarding the RMSE,

the averaged reduction between CALIOPE-Urban and UK-DM is about 32 %, and 24 % between UK-DM and UK-DM-LUR.

For r, an averaged improvement of 29 % between CALIOPE-Urban and UK-DM is observed, while the improvement is of 13320

% between UK-DM and UK-DM-LUR.
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COE MB (μg/m³) r RMSE (μg/m³)

-0.25 0.00 0.25 0.50 -5 0 5 0.5 0.6 0.7 0.8 0.9 10 15 20 25

All stations

Gràcia
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CALIOPE-Urban
UK-DM
UK-DM-LUR

Figure 7. Statistical results for each station after applying UK-DM and UK-DM-LUR to 2019 hourly data in LOOCV. In addition, we show

the statistical results for the CALIOPE-Urban estimates at each station. The All stations row refers to the average over all stations.

3.2.2 Uncertainty quantification

The uncertainty of the Universal Kriging predictions is estimated from the (multi)linear regression and the spatial interpolation

variances, as formulated in Sect. 2.4. The spatial interpolation is based on the variogram, which has been modelled from a

period-averaged passive dosimeter campaign; thus, assuming a static behaviour as pointed out in Sect. 2.4.2. Additionally,325

the variogram is considered isotropic for simplicity, while we know that in the urban scale, the NO2 autocorrelation structure

may significantly vary depending on the direction with respect to traffic road-links. These assumptions directly impact the

error variance estimated by the Universal Kriging, σ̂2. Considering that the interpolation error is normally distributed (Nref ),

the observation at a specific monitoring station when performing a LOOCV should be within ±σ̂ of the predicted value 68%

of the times, while 95% and 99,7% respectively for ± 2σ̂ and ± 3σ̂, as indicated in Table 3. To assess the normality of330

these distributions, Table 3 reports an empirical validation of the percentage of observations falling within the corresponding

error range, again computed in LOOCV. These percentages show that uncertainty is underpredicted for both methods, being

UK-DM-LUR overconfident results slightly better than the UK-DM ones.

To better understand the behaviour of uncertainty estimates, we show in Fig. 8 the probability density functions (PDFs) of

the hourly bias, normalized by the error standard deviation σ̂, for UK-DM and UK-DM-LUR using all studied monitoring335

stations in LOOCV over all available hours in 2019. The error PDFs have normal trends with a slightly negative skew and are
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±1σ̂ ±2σ̂ ±3σ̂

Nref 68 % 95 % 99,7 %

UK-DM 47.9 % 78.0 % 91.3 %

UK-DM-LUR 51.2 % 81.3 % 92.9 %

Table 3. Percentages of observations falling in the±σ̂,±2σ̂,±3σ̂ confidence intervals using all stations in LOOCV during 2019. Confidence

intervals are computed based on the hourly predicted values and their standard deviation.

overconfident in accordance with Table 3. The negative skew and the overall null mean bias (shown in Fig. 7) indicate that

samples with positive (Mh > Oh) bias are more frequent and have lower biases.

(Mh − Oh) σh

−4σ −3σ −2σ −1σ 0 1σ 2σ 3σ 4σ

UK−DM
UK−DM−LUR
Nref

Figure 8. PDF of the hourly bias, normalized by the Universal Kriging standard deviation, for all monitoring stations in LOOCV during

2019. The PDFs correspond to the reference Normal distribution (Nref ), UK-DM and UK-DM-LUR hourly results.

In addition, in Fig. 9, the PDFs are computed by splitting the observed NO2 concentration levels in three different ranges:

lesser than 40, greater than 100, and between 40 and 100 µg/m3. These PDFs allow us to study the behavior of the error340

distribution for different NO2 values. This figure shows that larger concentration levels tend to be underestimated, while the

smaller ones are overestimated. In all ranges and for both methodologies, the normal trends of the error PDFs are conserved,

being the intermediate ranges the closest to the theoretical normal distribution.

3.2.3 Street-scale maps

We first analyze the annual mean concentration levels of NO2. Table 4 presents the evaluation in LOOCV of the results post-345

processed by the UK-DM and the UK-DM-LUR methodologies applied directly to the 2019 annual mean. The presented

statistics are computed using a single NO2 averaged value for each station. The annual-based statistics are similar to the hourly
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UK−DM

(Mh − Oh) σh

−4σ −3σ −2σ −1σ 0 1σ 2σ 3σ 4σ

[NO2] ≤  40 µg/m3

40 µg/m3 ≤  [NO2] < 100 µg/m3

[NO2] ≥  100 µg/m3

Nref

UK−DM−LUR

(Mh − Oh) σh

−4σ −3σ −2σ −1σ 0 1σ 2σ 3σ 4σ

Figure 9. PDF by observed NO2 ranges of the hourly bias, normalized by the standard deviation error, for all monitoring stations in LOOCV

during 2019. The left panel corresponds to UK-DM, and the right panel to UK-DM-LUR.

results shown in Fig. 7; however, there is a substantial drop in the RMSE associated with the bias compensation when averaging

the hourly data.

COE MB (µg/m3) r RMSE (µg/m3)

UK-DM 0.25 0.20 0.74 3.93

UK-DM-LUR 0.41 0.76 0.84 3.27

Table 4. Statistical results using the 12 monitoring stations after applying UK-DM and UK-DM-LUR directly to the annual mean in LOOCV.

Fig. 10 presents the NO2 annual mean, their associated relative uncertainty, and probability maps of exceeding the 40 µg/m3350

NO2 annual limit value (AAQD 2008/EC/50) for both, UK-DM and UK-DM-LUR methodologies. The annual mean levels

combining the raw model with the monitoring stations data (UK-DM) (Fig. 10a) have similar trends to the raw CALIOPE-

Urban (Fig. 6b); however, pollution levels are significantly reduced. Adding the passive dosimeters information through the

microscale-LUR basemap (UK-DM-LUR), in Fig. 10d, slightly increases NO2 concentrations, particularly in the city center

and secondary roads, where the microscale-LUR basemap (Fig. 6a) exhibits steeper NO2 gradients than CALIOPE-Urban (Fig.355

6b).

As expected, the areas surrounding the monitoring stations (presented in Fig.2) show lower relative uncertainty, as can be

seen in Figs. 10b and 10e. The higher uncertainty regions, on the other hand, correspond to areas far from monitoring sites

and with extreme concentration levels which causes an extrapolation effect in the regression model. When comparing the

two uncertainty maps (Figs. 10b and 10e), UK-DM-LUR has regions with higher relative uncertainty than the UK-DM. This360

behaviour is due to the addition of the microscale-LUR covariate, which increases the standard deviation associated with the

regression model. In addition, some localized regions of high uncertainty can be observed in Fig. 10e. They are associated
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Figure 10. (a) NO2 2019 annual map resulting from applying UK-DM with the annual values, (b) Relative uncertainty associated with the

predictions in (a), (c) Annual probability map of exceeding the 40 µg/m3 NO2 limit value using the values in (a) and (b), (d) NO2 2019

annual map resulting from applying UK-DM-LUR with the annual values, (e) Relative uncertainty associated to the predictions in (d), and

(f) Annual probability map of exceeding the 40 µg/m3 NO2 limit value using the values in (d) and (e).
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Figure 11. (a) Hourly NO2 concentration map resulting of applying the UK-DM-LUR methodology at 9h UTC on 28/02/2019. (b) Relative

uncertainty associated to the predictions in (a), (c) Hourly probability map of exceeding the 200 µg/m3 NO2 hourly averaged limit value

using the UK-DM-LUR method at 9h UTC on 28/02/2019.

with passive dosimeters’ locations and trafficked roads where the microscale-LUR covariate has caused an increase in NO2

concentrations, rising the level of extrapolation in the regression model.

Regardless of the data-fusion method, the most polluted regions correspond to probabilities exceeding the annual limit above365

0.7, as shown in Figs. 10c and 10f. When considering the UK-DM-LUR method, 13 % of the Barcelona municipality area has

0.7 or higher probabilities of exceeding the annual limit; and this percentage rises to 30 % when considering probabilities

equal to or higher than 0.5. The Eixample district, which is the most polluted while being the most populous and densely

populated (approximately 270000 inhabitants and 36000 inhabitants per square kilometer (Ajuntament de Barcelona, 2019)),

has 95 % of its area exceeding the annual limit with a probability equal to or higher to 0.5, and 69 % in the case of 0.7. Thus,370

significant evidence indicates that the annual legal limit was broadly exceeded in Barcelona in 2019. Stronger evidence could

be obtained by reducing the uncertainty associated with the results, either by a better correlated urban model or by increasing

the monitoring system’s coverage. To test a more restrictive threshold, we have analyzed the exceedance probability annual

maps using the recommended WHO 2021 annual limit of 10 µg/m3 (not shown here), obtaining probabilities above 0.9 over

all the domain for both methodologies.375
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Figure 11 presents the NO2 prediction at a specific hour, its associated relative uncertainty, and the exceedance probability

map based on the 200 µg/m3 NO2 hourly threshold (AAQD 2008/EC/50) for the UK-DM-LUR methodology. The goal is to

illustrate that, apart from studying the long-term NO2 mean values, the present methodology can also be used to correct short

NO2 exposure episodes such as the ones observed during traffic rush hours. Figure 11 corresponds to the peak traffic hour at

9 UTC on February 28, 2019, which was a particularly polluted hour reporting 138 and 201 µg/m3 at the traffic monitoring380

stations of Eixample and Gràcia, respectively. Similar to Fig. 10, low uncertainty regions are obtained around the monitoring

stations’ locations. Likewise, high relative uncertainty regions are associated with pollution hot-spots due to the extrapolation

effect in the regression step. Concerning the exceedance probability maps shown in Fig. 11c , the city center and its major

trafficked streets have the highest values (> 0.7). For the Eixample district, 19 % of the area exceeds the hourly limit with a

probability equal to or higher than 0.5, and 6 % in the case of 0.7.385

4 Conclusions

The present work assesses the added value of including a microscale-LUR basemap into a data-fusion method to obtain spatially

bias-corrected urban maps of NO2 at the hourly scale. To do so, we have compared two different data-fusion methods: (i)

merging an urban dispersion model with the observational data of 12 monitoring stations using Universal Kriging (UK-DM),

and (ii) adding to UK-DM a non-linear LUR model as a covariate in the Kriging workflow based on the GBM algorithm (UK-390

DM-LUR). The comparison is based on the statistical performance in LOOCV at each monitoring station, the resulting NO2

maps, and their associated uncertainty.

The statistical performance of the microscale-LUR model has been assessed using a comprehensive nested cross-validation.

The obtained microscale-LUR basemap (r = 0.64, RMSE = 11.87µg/m3) outperformed the raw annual-averaged dispersion

model results (r = 0.54, RMSE = 13.68 µg/m3), highlighting the convenience of using passive dosimeters campaigns to395

explain the spatial distribution of NO2. Moreover, a novel traffic density variable based on the combination of different traffic

buffer sizes has been shown to have a significant influence (17.7 %) in the microscale-LUR basemap, suggesting its relevance

in future microscale-LUR models.

Adding the microscale-LUR time-invariant spatial information (UK-DM-LUR) has proven to significantly improve the skills

of the more straightforward data-fusion UK-DM method at the hourly scale, increasing the correlation coefficient (r) by 13 %400

and reducing the RMSE by -24 % in average over all monitoring stations during 2019. Thus, our results suggest that data-

fusion methods applied at the street-scale benefit from high-spatial resolution data such as passive dosimeters campaigns, urban

morphology, or traffic intensity estimates. When only using monitoring stations in the data-fusion approach, the spatial patterns

of NO2 rely mainly on the urban model patterns. Generally, the better the temporal and spatial coverage of observational data,

the better statistical performance can be achieved.405

To check the consistency of the estimated uncertainty, we have empirically validated the UK-based uncertainties through

a LOOCV. Despite the Universal Kriging’s predicted variance is slightly overconfident and tends to degrade for extreme

concentration values, we found that it is a meaningful estimate of the uncertainty. The PDFs of the error are close to the
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normal distribution, especially for the UK-DM-LUR approach. The spatial characterization of the uncertainty adds value to

the NO2 concentration maps, making data-fusion results more comprehensive for regulatory purposes, decision-makers, and410

health impact assessment. For instance, uncertainty maps can be used to allocate new observational stations or to plan future

LCS campaigns. In this regard, our results show that pollution hot-spots are areas of high uncertainty underrepresented by the

current monitoring system. We thus stress the need to monitor the vicinity of heavily trafficked roads better to increase the

performance of data-fusion methods in predicting hourly and annual exceedances.
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